On Boundedness in Depth in the π-Calculus⋆

نویسنده

  • Roland Meyer
چکیده

We investigate the class PBD of π-Calculus processes that are bounded in the function depth. First, we show that boundedness in depth has an intuitive characterisation when we understand processes as graphs: a process is bounded in depth if and only if the length of the simple paths is bounded. The proof is based on a new normal form for the π-Calculus called anchored fragments. Using this concept, we then show that processes of bounded depth have well-structured transition systems (WSTS). As a consequence, the termination problem is decidable for this class of processes. The instantiation of the WSTS framework employs a new well-quasi-ordering for processes in PBD .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on Mobility

We study natural semantic fragments of the π-calculus: depthbounded processes (there is a bound on the longest communication path), breadth-bounded processes (there is a bound on the number of parallel processes sharing a name), and name-bounded processes (there is a bound on the number of shared names). We give a complete characterization of the decidability frontier for checking if a π-calcul...

متن کامل

A Type System for proving Depth Boundedness in the pi-calculus

The depth-bounded fragment of the π-calculus is an expressive class of systems enjoying decidability of some important verification problems. Unfortunately membership of the fragment is undecidable. We propose a novel type system, parameterised over a finite forest, that formalises name usage by π-terms in a manner that respects the forest. Type checking is decidable and type inference is compu...

متن کامل

Depth Boundedness in Multiset Rewriting Systems with Name Binding

In this paper we consider ν-MSR, a formalism that combines the two main existing approaches for multiset rewriting, namely MSR and CMRS. In ν-MSR we rewrite multisets of atomic formulae, in which some names may be restricted. ν-MSR are Turing complete. In particular, a very straightforward encoding of π-calculus process can be done. Moreover, pν-PN, an extension of Petri nets in which tokens ar...

متن کامل

Using Session Types for Reasoning About Boundedness in the Pi-Calculus

The classes of depth-boundedand name-bounded processes are fragments of the π-calculus for which some of the decision problems that are undecidable for the full calculus become decidable. P is depth-bounded at level k if every reduction sequence for P contains successor processes with at most k active nested restrictions. P is name-bounded at level k if every reduction sequence for P contains s...

متن کامل

Multiset rewriting for the verification of depth-bounded processes with name binding

We combine the two existing approaches to the study of concurrency by means of multiset rewriting: multiset rewriting with existential quantification (MSR) and constrained multiset rewriting. We obtain ν-MSR, where we rewrite multisets of atomic formulae, in which terms can only be pure names, where some names can be restricted. We consider the subclass of depth-bounded ν-MSR, for which the int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008